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Preface
A feeling of adventure is an element of games. We compete against the
uncertainty of fate, and experience how we grab hold of it through our own
efforts. –Alex Randolph, game author

The Uncertainty of Games

Why do we play games? What causes people to play games for hours on
end? Why are we not bored playing the same game over and over again?
And is it really the same game? When we play a game again and again,
only the rules remain the same. The course of the game and its outcome
change each time we play. The future remains in darkness, just as in real
life, or in a novel, a movie, or a sporting event. That is what keeps things
entertaining and generates excitement.
The excitement is heightened by the possibility of winning. Every player

wants to win, whether to make a profit, experience a brief moment of joy,
or have a feeling of accomplishment. Whatever the reason, every player
can hope for victory. Even a loser can rekindle hope that the next round
will bring success. In this, the hope of winning can often blind a player to
what is in reality a small probability of success. The popularity of casino
games and lotteries proves this point again and again.
Amusement and hope of winning have the same basis: the variety that

exists in a game. It keeps the players guessing for a long time as to how
the game will develop and what the final outcome will be. What causes
this uncertainty? What are the mechanisms at work? In comparing games
like roulette, chess, and poker, we see that there are three main types of
mechanism:

1. chance;

2. the large number of combinations of different moves;

3. different states of information among the individual players.

ix
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Random influences occur in games involving dice and the mixing of
cards. The course of a game, in accordance with its rules, is determined
not only by decisions made by the players, but by the results of random
processes. If the influence of chance dominates the decisions of the players,
then one speaks of games of chance. In games of pure chance, the decision
of a player to take part and the size of a player’s bet are perhaps his1

most important decisions. Games of chance that are played for money are
generally governed by legal statute.
During the course of most games, there are certain situations in which

the players have the opportunity to make decisions. The available choices
are limited by the rules of the game. A segment of a game that encom-
passes just one such decision of a single player is called a move. After only
a small number of moves, the number of possibilities can already represent
an enormous number of combinations, a number so large that it is diffi-
cult to recognize the consequences of an individual move. Games whose
uncertainty rests on the multiplicity of possible moves are called combina-
torial games . Well-known representatives of this class are chess, go, nine
men’s morris, checkers, halma, and reversi. Games that include both com-
binatorial and random elements are backgammon and pachisi, where the
combinatorial character of backgammon is stronger than that of pachisi.
A third source of uncertainty for the players of a game arises when the

players do not all have the same information about the current state of
the game, so that one player may not possess all the information that is
available to the totality of players. Thus, for example, a poker player must
make decisions without knowing his opponents’ cards. One could also argue
that in backgammon a player has to move without knowing the future rolls
of the dice. Yet there is a great difference between poker and backgammon:
no player knows what the future rolls of the dice will be, while a portion of
the cards dealt to the players are known by each player. Games in which the
players’ uncertainty arises primarily from such imperfect information are
called strategic games. These games seldom exist in a form that one might
call purely strategic. Imperfect information is an important component
of most card games, like poker, skat, and bridge. In the board games
ghosts and Stratego, the imperfect information is based on the fact that
one knows the location, but not the type, of the opponent’s pieces.2 In

1Translator’s note: the German word for player, Spieler, is masculine, and so the
author of this book could easily write the equivalent of “a player. . . his move” without
too many qualms. Faced with this problem in English, I have decided to stick primarily
with the unmarked masculine pronoun, with an occasional “his or her” lest the reader
forget that both men and women, boys and girls, can play games.

2Ghosts and Stratego are board games for two players in which each player sees only
the blank reverse side of his opponent’s pieces. At the start, a player knows only his
own pieces and the positions of the opposing pieces. In ghosts, which is played on a
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Figure P.1. The three causes of uncertainty in games: a player wins through some
combination of chance, logic, and bluff.

Diplomacy,3 and rock—paper—scissors, 4 the players move simultaneously,
so that each player is lacking the information about his opponent’s current
move. How this imperfect information plays out in a game can be shown
by considering what happens to the game if the rules are changed so that
the game becomes one of perfect information. In card games, the players
would have to show their hands. Poker would become a farce, while skat
would remain a combinatorially interesting game similar to the half-open
two-person variant. In addition to the game rock—paper—scissors, which is
a purely strategic game, poker is also recognized as a primarily strategic
game. The degrees of influence of the three causes of uncertainty on various
games are shown in Figure P.1.

There remains the question whether the uncertainty about the further
course of the game can be based on other, as yet unknown, factors. If one
investigates a number of games in search of such causes, one generally finds
the following:

chessboard with four good and four bad ghosts on the two sides, only the captured
figures are revealed. In Stratego, the capturing power of a piece depends on its military
rank. Therefore, a piece must be revealed to the opponent at the time of an exchange.
The simple rules of ghosts and a game with commentary can be found in Spielbox 3

1984, pp. 37—39. Tactical advice on Stratego can be found in Spielbox 2 1983, pp. 37 f.
3Diplomacy is a classic among board games. It was invented in 1945 by Alan Cal-

hamer. Under the influence of agreements that the players may make among themselves,
players attempt to control regions of the board, which represents Europe before the First
World War. The special nature of Diplomacy is that the making and abrogating of agree-
ments can be done secretly against a third party. An overview of Diplomacy appears in
Spielbox 2 1983, pp. 8—10, as well as a chapter by its inventor in David Pritchard (ed.),
Modern Board Games, London 1975, pp. 26—44.

4Two players decide independently and simultaneously among the three alternatives
“rock,” “paper,” and “scissors.” If both players made the same choice, then the game
is a draw. Otherwise, “rock” beats (breaks) “scissors,” “paper” beats (wraps) “rock,”
and “scissors” beat (cut) “paper.”
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• the result of a game can depend on physical skill and performance
ability. In addition to sports and computer games, which do not
belong to the class of parlor games that we are considering here,
Mikado is a game that requires manual dexterity.

• the rules of a game can be partially ambiguous. One arrives at such
situations particularly in the learning phase of a complex game. In
other cases, doubts arise in the natural course of the game. Thus in
the crossword game Scrabble it can be unclear whether a word should
be permitted. And even in skat, there are frequently questions raised,
if only about minor details.

• an imperfect memory does not make only the game “memory” more
difficult. However, this type of uncertainty is not an objective prop-
erty of the game itself.

In comparison to chance, combinatorial richness, and differing informa-
tional states, these last phenomena can safely be ignored. None of them
can be considered a typical and objective cause of uncertainty in a parlor
game.

Games and Mathematics

If a player wishes to improve his prospects of winning, he must first at-
tempt to overcome his degree of uncertainty as much as possible and then
weigh the consequences of his possible courses of action. How that is to
be managed depends, of course, on the actual causes of the uncertainty: if
a player wishes to decide, for example, whether he should take part in a
game of chance, then he must first weigh the odds to see whether they are
attractive in comparison to the amount to be wagered. A chess player, on
the other hand, should check all possible countermoves to the move he has
in mind and come up with at least one good reply to each of them. A poker
player must attempt to determine whether the high bid of his opponent is
based on a good hand or whether it is simply a bluff. All three problems
can be solved during a real game only on a case-by-case basis, but they can
also be investigated theoretically at a general level. In this book, we shall
introduce the mathematical methods that have been developed for this and
provide a number of simple examples:

• games of chance can be analyzed with the help of probability theory.
This mathematical discipline, which today is used in a variety of
settings in the natural sciences, economics, and the social sciences,
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grew out of a 17th-century desire to calculate the odds in a game of
chance.

• there is no unified theory for the combinatorial elements in games.
Nonetheless, a variety of mathematical methods can be used for an-
swering general questions as well as solving particular problems.

• out of the strategic components of games there arose a separate math-
ematical discipline, called game theory , in which games serve as a
model for the investigation of decison-making in interactive economic
processes.

For all three game types and their mathematical methods, the computer
has made possible applications that formerly would have been unthinkable.
But even outside of the development of ever faster computers, the mathe-
matical theory itself has made great strides in the last hundred years. That
may surprise those unversed in modern mathematics, for mathematics, de-
spite a reputation to the contrary, is by no means a field of human endeavor
whose glory days are behind it.
Probability theory asks questions such as, which player in a game of

chance has the best odds of winning? The central notion is that of proba-
bility, which can be interpreted as a measure of the certainty with which a
random event occurs. For games of chance, of course, the event of interest
is that a particular player wins. However, frequently the question is not
who wins, but the amount of the winner’s winnings, or score. We must
then calculate the average score and the risk of loss associated with it. It
is not always necessary to analyze a game completely, for example, if we
wish only to weigh certain choices of move against each other and we can
do so by a direct comparison. In racing games governed by dice, one can
ask questions like, how long does it take on average for a playing piece to
cover a certain distance? Such questions can become complicated in games
like snakes and ladders, in which a piece can have the misfortune to slip
backward. Even such a question as which squares in the game Monopoly
are better than others requires related calculational techniques. It is also
difficult to analyze games of chance that contain strong combinatorial ele-
ments. Such difficulties were first overcome in the analysis of blackjack.
Combinatorial games , such as the tradition-rich chess and go, are con-

sidered games with a high intellectual content. It was quite early in the
history of computational machines that the desire was expressed to develop
machines that could serve as worthy opponents in such games. But how
could that be accomplished? Indeed, we need computational procedures
that make it possible to find good moves. Can the value of a move be
somehow uniquely determined, or does it always depend on the opponent’s
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reply? In any case, the current state of technology for search procedures
and computational techniques is impressive. An average chess player no
longer has a ghost of a chance against a good chess program. And it is
not only chess that has been the object of mathematical interest. Win-
ning strategies have been found for many games, some of them surprisingly
simple. For other games it has been determined only which player theoret-
ically should win, without a winning strategy actually being found. Some
of these games possess properties that make it doubtful whether such a
strategy will ever be found.

It is a task of game theory to determine how strategic games differ
fundamentally from combinatorial games and games of chance. First, one
needs a mathematical definition of a game. A game is characterized by its
rules, which include the following specifications:

• the number of players.

• for each game state, the following information:

— whose move it is;

— the possible moves available to that player;

— the information available to that player in deciding on his move.

• for games that are over, who has won.

• for random moves, the probabilities of the possible results.

Game theory arose as an independent discipline in 1944, when out of
the void there appeared a monumental monograph on the theory of games.
Although it mentions many popular games such as chess, bridge, and poker,
such games serve game theory only as models of economic processes. It
should not be surprising that parlor games can serve as models for real-life
interactions. Many games have borrowed elements of real-life struggles for
money, power, or even life itself. And so the study of interactions among
individuals, be it in cooperation or competition, can be investigated by
looking at the games that model those interactions. And it should come as
no surprise that the conflicts that arise in the games that serve as models
are idealized. That is just as inevitable as it is with other models, such as
in physics, for example, where an object’s mass is frequently considered to
be concentrated at a single point.
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About This Book

We have divided the book into three parts to reflect our division of games
into three types, and so we investigate mathematically in turn the chance,
combinatorial, and strategic elements of games. Each of the three parts
encompasses several chapters, each of which considers a specific problem–
generally a game or game fragment.
In order to reach as broad an audience as possible, we have not sought

the generality, formalism, and completeness that are usual in textbooks.
We are more concerned with ideas, concepts, and techniques, which we
discuss to the extent that they can be transferred to the study of other
games.
Due to the problem-oriented selection of topics, the mathematical level

differs widely among the different chapters. Although there are frequent
references to earlier chapters, one can generally read each chapter inde-
pendently of the others. Each chapter begins with a question, mostly of
a rhetorical nature, that attempts to reveal the nature and difficulty of
the problem to be dealt with. This structure will allow the more mathe-
matically sophisticated readers, for whom the mathematical treatment will
frequently be too superficial and incomplete, to select those parts of greater
mathematical interest. There are many references to the specialist litera-
ture for those who wish to pursue an issue in greater depth. We have also
given some quotations and indications of the mathematical background of
a topic as well as related problems that go beyond the scope of the book.
We have placed considerable emphasis on the historical development of

the subject, in part because recent developments in mathematics are less
well known than their counterparts in the natural sciences, and also be-
cause it is interesting to see how human error and the triumph of discovery
fit into a picture that might otherwise seem an uninterrupted sequence of
great leaps forward. The significance of the progress of mathematics, espe-
cially in recent decades, in the not necessarily representative area of game
theory, can be seen by a comparison with thematically similar, though often
differing in detail of focus, compilations that appeared before the discovery
of many of the results presented in this book:

• René de Possel, Sur la théorie mathématique des jeux de hasard et
de réflexion, Paris 1936. Reprinted in Hevre Moulin, Fondation de la
théorie des jeux, Paris 1979.

• R. Vogelsang, Die mathematische Theorie der Spiele, Bonn 1963.
• N.N. Vorob’ev, The Development of Game Theory (in Russian), 1973.
The principal topic is game theory as a mathematical discipline, but
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this book also contains a section on the historical development of the
theories of games of chance, and combinatorial and strategic games.5

• Richard A. Epstein, The Theory of Gambling and Statistical Logic,
New York 1967 (expanded revised edition, 1977).

• Edward Packel, The Mathematics of Games and Gambling, Washing-
ton 1981.

• John D. Beasley, The Mathematics of Games, Oxford 1989.

• La mathématique des jeux, Bibliothèque pour la Science, Paris 1997.
Contributions on the subject of games from the French edition of Sci-
entific American, some of which have been published in the editions
of other countries.
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